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S U M M A R Y  
Several aspects of the variational approach to steady state heat conduction are examined. 

Introduction 

Recently Brand and Lahey [1] defined a variational formulation of a steady state heat conduc- 
tion problem with mixed boundary conditions. In this paper we examine the relationship 
between some variational and differential problems. In section 1 we remark on this relation- 
ship and its principal limitation, and we extend some earlier similar results of Solomon [5] 
to other steady state heat conduction problems. In section 2 we discuss a method for simplifying 
the numerical solution of a variational problem. In section 3 we present a simple problem 
arising in gas dynamics for which the variational approach is of special value. 

1. The Variational Approach to Steady State Heat Conduction Problems 

The variational approach to steady state heat conduction problems is based upon their relation- 
ship with and possible equivalence to minimum problems for appropriate integral functionals. 
The simplest case is that of the Laplace equation 

Txx + Tyy + T~ = 0 (1) 

over a domain D in (x, y, z) space with boundary F, subject to the boundary conditions 

T -  = g on F ,  (2) 

for a given function 9. This corresponds to steady heat conduction in a homogeneous body with 
constant conductivity and given temperature distribution on the boundary. 

It is well known that ira function G = G(x, y, z) exists in D satisfying (2), for which the integral 

llfo(G~ +GZr +G2)dxdydz (3) 

is finite, then the problem of solving (1) subject to (2) is equivalent to that of minimizing the 
integral functional 

T?)dxdydz 

among all functions T (x, y, z) satisfying (2). This equivalence may be of great value in computing 
the solution of (1) subject to (2) and indeed problems exist where it may be nearly essential, as 
will be seen in section 3. It is important that the engineer having this purpose in mind note that 
the equivalence does not always hold. In fact simple continuous functions 9 can be found (see 
Courant [21) such that the integral I IT]  will be infinite for any function T satisfying (2). 
Hence the minimum problem for I [T]  will have no meaning while a solution to (1), (2) still 
exists. This fact must be taken into account when wishing to solve steady heat conduction 
problems via variational formulations. 
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We will now consider several steady heat conduction problems for composite media, for 
phase change processes, for bodies with internal heat sources, and for mixed boundary condi- 
tions. All of the problems are considered in a domain D of(x, y, z) space with bounding surface 
F. In each case we define a family f2 of functions defined in D, and an integral functional I [T]  
for T =  T(x, y, z) in Q and we consider the problem of minimizing I[T] in s 

min. I [ T ] .  (4) 

We assume that at least one function T in f2 exists for which 

l IT] < oo. (5) 

In the first case considered (Problem I) equivalence between the differential and variational 
problems holds if the conductivity varies only slightly with its argument. For  problems II, III 
the extremal problem (4) and the original problem are equivalent and the equivalence carries 
over to the non-isotropic case. For  each problem we state the differential equation (D.E.) and 
boundary conditions (B.C.), followed by the integral functional (I.F.) and the class of functions 
Q. 

Problem I. A Phase Change Problem 
The domain D is occupied by a material undergoing a change of phase, from phase I to II, at 
temperature T~.. There is an internal heat source F(x, y, z) present; the conductivity K=K(T) 
is a function only of the temperature and undergoes a jump discontinuity with the phase change ; 
S denotes the interphase surface, while F~, F 2 denote distinct portions of F, F = F 1 + F 2. (See 
Solomon [5]) 

D.E. div. (K grad. T )+  F = 0 in D ; (6) 

B.C. T =  g on F 1 , (7) 

-Kgrad. T.n=Q+aT on F 2 ; 

T ~ T ,  on S ,  (8) 

K(T)] grad. T[ is continuous across S.  

Here n refers to the unit outer normal vector at the corresponding surface; Q = Q (x, y, z) is a 
known function on 1"2; S is the unknown boundary between phase I and phase II domains, 
whose determination constitutes the main objective of the problem, while a > 0 is a constant. 

The related variational problem is to minimize the integral functional 

I.F. I[T] = jjil) {K(T)2(T~2 + Ty2 + T~2)-2TF}dxdydz 
(9) 

+ fs  2 (2Qr+ar2)ds 

for ds the areal element on F2, over the class f2 of all functions T such that 
(1) I[T]< oo 
(2) T=g on F 1. 
The interface conditions (8) automatically determine the surface S. 

Problem lI. A Composite Medium 
The domain D is the union of two subdomains D1 and D2, occupied by different materials. The 
conductivity K = K (x, y, z) is a function of (x, y, z) alone, and undergoes a jump discontinuity 
across the surface S between the two domains. We assume that a heat source given by the 
function F(x, y, z) is again present. 

D.E. div. (K(x, y, z) grad. T)+F = 0 in D1, D2 ; (10) 

B.C. T=-g on F1 ; (11) 
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- K g r a d .  T ' n = Q + a T  on F~. 

K grad. T- n is continuous across S. 

An equivalent minimum problem refers to the functional 

f l f  {K(T2 + Ty2 + Tz2)-2TF}dxdydz I.F. I IT]  = D 

+ ft'r(2QT+aT2)ds 

over the class of all functions f2 such that 

(1) I [ T ]  < o~, 
(2) T - = g  on F~. 
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(12) 

(13) 

As in problem I the condition (12) is automatically satisfied by the solution to the minimum 
problem. 

Problem IIi. A Heat Source Distributed Along an Internal Surface 

For the sake of simplicity we consider a homogeneous medium with unit conductivity. Let S 
be a surface lying entirely within D. We wish to find the steady temperature distribution arising 
under the following conditions: 

D.E. T~x+Tyy+Tz~ = 0 in D,  

B.C. T - g  on F1, 

grad. T.n  = Q on F2, 

[grad. r" n]s = - R on S,  

where [ Is denotes the limiting value of the enclosed function at S from the side of S into which 
n points, minus that from the opposite side; Q = Q(x, y, z) and R = R(x, y, z) are given functions. 

The equivalent variational problem is to minimize the integral functional 

I.F. I[T] =flfD(T2 + Ty2 + Tz2)dxdydz 

in the class f2 of all functions T such that T ~ g on Fx. The conditions at S hold automatically 
for the solution. 

2. A Method of R. Courant Simplifying the Numerical Solution o f  the Variational Problem 

One of the advantages of variational formulations of steady state heat conduction problems 
is the availability of additional methods for their solution, such as that of Rayleigh-Ritz. A 
difficult problem in applying these methods is the satisfaction of the condition 

u ~ g  on F 1. (14) 

One method of avoiding this difficulty is the addition to the functional I [u] of a term of the 
form 

)L ff~l (T-g)2 ds (15) 

for 2 > 0 a large positive constant, and the consideration of the minimum problem for this new 
augmented functional in a class ~2 of functions for which we no longer require the condition 
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(14). If T (a) denotes the solution to this altered problem one can show that T (~) converges to the 
solution of our original problem, satisfying (14), as 2 ~ Go. This will be shown for a simpler 
problem, without loss of generality, in the Appendix. The method of introducing (15) has been 
seen to furnish good results by R. Courant [3]. 

3. A Problem of Elliptic-Parabolic Type 

In recent years problems of transonic gas dynamics and magnetohydrodynamics have been of 
increasing interest. These fields yield differential equations which may degenerate, for example 
from elliptic to parabolic type, at the boundary of a domain. In such problems the engineer 
cannot simply utilize standard finite difference methods, since the data, although sufficient for 
defining the solution, is insufficient for using these methods. (See i.e. Jamet [4]). In these cases 
variational methods are of special value. We will consider the following example: (See also 
A. Solomon and F. Solomon [6]) 
Problem: Solve the equation 

D.E. (tut)t+Uxx = 0 in D �9 0<  x, t <  1 (16) 

for the function u(x, t) satisfying the conditions 

B.C. u(0, 0_<t_<l 

u(x, 1)= f(x) ,  0_< x <  1 (17) 

u(1, t ) :  o_< t_< 1. 

Note that no value is specified for u(x, 0), but on the contrary, this value can be shown to be 
uniquely determined by (16), (17). Conditions (16) and (17) are clearly insufficient for the appli- 
cation of any of the usual finite difference methods for solving elliptic equations. Nevertheless 
it is easily seen that the problem (16), (17) is equivalent to the minimum problem for the 
functional 

I.F. I [ u ] =  fff (tuZt+u~)dtdx 
D 

in the class of all functions satisfying (17), with the function value u(x, 0) not specified. 

Appendix 

Consider the problem 

min. I IT]  (18) 
for n 

among all functions T with no limitation upon the behavior of T on F, where g is defined on F. 
If T =  T (x) is the solution to the problem (18), then 

d 

for any function t/. This implies 

Assume that G is a function defined on D, and coincident with g on F. Let t/= T -  G. Then 
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For any number e > O, with e < x /2  

rx ax <_ + 

with similar inequalities for Ty Gy and T~ G z. Hence 

fifo 
= 0(1/2) .  

As  ). -* ~ ,  T = T (~) --) g on F and hence T (~) converges to the solution of the equation 

Tx~+Tyy+T~z= 0 on D ,  

satisfying (14) on F. 
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